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SUMMARY

In the gpproximately isotropic velocity and temperature fluctuation
fields behind a hot. grid, measurements were made of fluctuation levels
and of various double and triple correlation functions.

The double and triple correlation coefficient functions are of
roughly the same spatial extent for the vector and scalar fields. As
anticipated from theoretical considerations, the temperature fluctua-
tlons die out more slowly than does the turbulence.

INTRODUCTION

The simplest turbulent flow is that for which the statistical prop-
erties of the field are invariant to rotation or reflection of the Car-
tesian coordinate system. This notion, isotropic turbulence, was intro-
duced by Taylor in 1935 (ref. 1) and has been fruitful in permitting
relatively detailed analytical studies (ref. 2).

An approximation to isotropic turbulence turns up in the high Reyn-
olds number flow far behind & plane "porous"” obstacle spanning a uniform
mean flow in & duct. The customary obstacle is & square mesh biplane
grid of round rods.

Although the turbulence found in natural and technological flows is
ordinarily far from isotropic, meny features of diverse turbulent flows,
%specially the spatially local features, seem to be moderately universal

ref. 3).

A comparison between the correlstion equations for concomitant (in-
compressible) isotropic veloclty and temperature fields shows differences
atiributable to the fact that velocity is a vector, while temperature is
a scalar (refs. 4 to 8). (As pointed out in refs. 4 and 5, the work
gpplies equally well to isotropic turbulent mixing between two different
constituents, provided the molecular mass transfer coefficient is
nearly constant over the concentration range encountered.) The relative
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decay rates were estimasted under strong simplifying aessumptions, and the
relative "microscales"” were deduced in terms of the Prandtl number of
the filuid. Since these theoretical predictions are essentlally conjec-
ture, it is necessary to determine some facts through measurement.

A comparison of the corresponding statistical properties of these
two fields has not only intrinsic interest; it mey also contribute even-
tually to an understanding of the difference between momentum and heat

transport rates in turbulent shear flows with mean temperature gradients.

A "hot grid" with thermal mesh equal to momentum mesh was selected
with the expectation that approximate equality of integral scales would
be obtained. The analyslis of reference 4 suggests that the flow with
equal Integrel scales for velocity and temperature fields msy not be the
simplest case analytically but is relatively simple for experimental
realization.

This work conducted at The Johns Hopkins University has been spon-
sored and supported financlally by the National Advisory Committee for
Aeronsubics. Acknowledgment is made to Dr. L. S. G. Kovasznay, Mr. L.
T. Miller, and Mr. J. L. Lumley for their advice and Mr. S. Bhadurl for
preparing the filgures. : -

SYMBOLS
°y specific heat at constant pressure
Ee(xx) one-dimensional power spéctrum of 6-fluctuations
By () one-dimensional power spectrum of u-fluctuations
e,ey,8p output voltege of hot wire due to turbulent fluctuations;
subsceripts 1 and 2 distinguish between different wires
f(r) longitudinal double velocity correlation coefficlent,
u(x,y,z)ulxtr,y,z) - w2
u'(x) u'(x+r) uiué
g(r) lateral double velocity correlation coefficlent,
ulx,y,z)ulx,y+r,z)
u' 8(x)
i wire current
i output of cubing circuit, microamps

12534
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k(r)

Lp,Lg

n(r)

n(xr)

Pe

p(r)

Re

output of squering circuit, microamps
thermal conductivity coefficient

longitudinal triple velocity correlation,

2
wP(x,7,2)ulxer,y,z) _ Ui
EJ.' (x)__‘2 u' (x+r) ut Zué
Integral scales of £ and m, respectively

grid mesh size for momentum and heat, M = 1 in.

e
temperature correlation coefficient, Gﬁétyxf) g?f;ir%ﬂ = -Z—:!'g,?-
172

3
676,

_6_2_(_}513": z) 6(xtr,y,2) -
[e' (x)]? ot (x+x) 616}

triple tempersture correlation,
Peclet number, u'?\G/T
Prandtl number, v/v
temperature-veloeity triple correlation,
u(x,y,z)6(x,y,z) 6(x+r,y,z) _ ul162
u'ixi G'ixi 6'§x+r§ - uieieé

Reynolds number, 7\gu' /v

space intervel

—z,, =2.3/2
skewness of voltage, e°/(e?) /

3/2
% 3 Se 2
skewness of voltage deriyvative, SE) (FE)

5/ = 3/2
skewness of voltage difference, (e - ez) (e - ep)

=, 5.3/2
skewness of velocity, u5/(u2) /

3/2

skewness of velocity derivative, (du/ Bx)ﬁ3 / (du/ 5x)2]

3/2
skewness of velocity difference, (u; - u2)3 / Eul - uz)zj /

-=,—5.3/2
skewness of tempersture fluctuation, 6°/(6%) /
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mean fluld tempersture - -
time
nean flow velocity —

turbulent velocity fluctustions in x- and y-directions,
regpectively ‘ '

u(x)

uf{x+r)

vy = v(y), vy = v(y+r)

Cartesian space coordinstes, x alined with mean flow

thermal diffusivity coefficient, K/pcp

length parameters in universal equilibrium theory for veloclty
end temperature, respectively (n is the "Kolmogoroff micro-
scale")

temperature fluctuation _

6; = 6(x), 65 = O(x+r)

weve numbers st lower and upper bounds of inertial subrange,
respectively, corresponding to velocity spectrum except
when subscript 6 1is used

wave number in x-direction -

dissipation scales and lateral and longitudinel veloclty and
temperature fluctuations, respectively

viscoslity coefficient
kinematic viscosity coefficient, p/p
space 1nterval in x-direction, = Ax

density

Subscripts:

max

6

maximum

wave number corresponding to temperature spectrum

]
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Superscript:

indicates root-mean-square velues, e.g., u' = u?

EXPERIMENTAT. EQUIPMENT

Approximately isotropic turbulence was produced at some distance
behind & biplane square mesh grid of l/4-inch-round metal rods spaced 1
ineh at the centers. The grid was positioned in the wind tunnel as
shown in figure 1. The signals generated by the hot-wires in the wind
tunnel were fed into the clrcuit outlined in figure 2. In order to
measure the various skewness factors and triple correlation functions
presented later in this report, it was necessary to incorporate the
power and operational amplifier circuit (fig. 3) to boost the signal
levels to the proper input level of the squaring and cubing circuits
shovn in figures 4 and 5. (The auxiliary squaring and cubing circuit
was developed by Mr. L. T. Miller of the Aeronsutics Department, The
Johns Hopkins University.)

A typical set of calibration curves for this auxiliary squaring and
cubing circuit is shown in figure 6. The response of the auxilisry am-
plifiers was flat to approximately 10 kllocyecles vwhen used as ordinery
power boosters; and when used as differentiating operational amplifiers,
the response was linear with frequency to approximately 6 kilocycles

(fig. 7).

The wind tunnel walls were adjusted to provide uniform mean flow
over approximately 90 percent of the cross. section. This configuration
produces a turbulence which is not guite isotropic: +v' = 0.9 u' at
x/M = 100. (This is consistent with all previous measurements in which
the authors have participated (see, e.g., ref. 7).

The grid was heated with 220-volt, 3-phase alternating current in
order to generste approximately isotropic temperature fluctuations in
this flow field. No 120-cycle-per-second periodic tempersture component
was detectable with this arrangement. To produce a uniform mean temper-
ature field downstream of the grid, it was necessary to have local con-
trol over the heating current supplied to grid rods. Adjustable resis-
tors were added to the grid heating current supply lines to achieve the
desired mean temperesture distribution (fig. 8).

The present arrangements generated satisfactorily homogeneous tur-
bulence and tempersture fields (fig. 9).

Turbulence and tempersture root-mean-square fluctustion measurements
were made with the hot-wire anemometry equipment described in reference
8. The experimental procedures for simulteneous velocity and tempersture
fluctuations are given in reference 9.
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All the measurements were made at a mean speed of 14 feet per sec-
ond and a mean temperature rise (across the grid) of about 5° C. The
resulting tempersture fluctuations were inconveniently smell, but this
ensured negligible influence of density variations upon the fully devel-
oped turbulent velocity field, as attested by both turbulence level and
velocity correlation measurements.

Because of the extremely small temperature fluctuations, it was nec-
essary to use unusually high resistance hot-wires, 0.00005-inch plati-
num of about 75- to 150-chm resistance and sbout 0.1 inch long. No
length corrections were applied to the data. The high resistance neces-
sitabed correction for heating current fluctuetions when the system was
operated as an anemometer. The uncompenseted time constant of these
wires was about 0.1 millisecond. In this perticular flow fileld, the
wire current giving equal root-mean-square signal contributions from ve=-
locity and from the temperature fluctuations was 5.5 milliamperes. The
sensitivity to temperature was approximately linear with current, and
the sensitivity to veloclity was proportional to the current cubed for
currents less than roughly 0.7 milliempere.

EXPERIMENTAL PROCEDURE

The decays of the temperature and velaoclty fluctuations were meas-
ured with a single hot-wire used at various operating conditions so that
the separate decsy functions could be calciulated (ref. 9). The correla-
tion was zero with the accuracy of the data.

Two-point double correlstions were measured with two wires mounted
on & traversing device that located the wires with respect to each other
within 0.005 inch. One wire was held stationary and the other was moved
«downstream, and the line Jjoining the wires made an angle of 5° with the
mean flow velocity. This was dorne in order to avoild interference effects.
When the wires were at their closest position, they were laterally sepa-
rated rather than one behind the other. Appropriate corrections have
been epplied to the correlation deta by assuming the isotropic relation
for the correlation tensor.

Since preliminary measurements showed that the velocity double cor-
relations were unaffected by the presence of temperature fluctuations,
the veloclity measurements reported here were done with the heat off for
convenience.

Temperature double correlations were measured using the hot-wires
as resistance thermometers (1€ 1 ma). The correlations were corrected
'for noise by assuming the noise uncorrelated with the signal.

ol

Pe6v.
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For convenlence, the u' spectrum was measured without heating
after it hed been determined that the u' levels and correlations were
not appreciably changed by the heating.

The temperature spectrum was measured with "mixed" sensitivity,
that is, wire temperature set for the same order of response to velocity
and tempersture. This was done because, under pure-resistance-thermometer
operation, the signsl was inconveniently low at the higher frequencies.
Of course, increasing the wire temperature does not increase the rate of
gathering of Information on the larger voltage signal.

With mixed sensitivity the hot-wire responds to both velocity and
temperature spectra, which must be separated. Simple superposition of
the two energy spectra follows from the assumption that all harmonics
of the two spectra are uncorrelated. Since 6u =~ 0 1in this field, such
an assumption seems reasonable. Then the temperasture spectrum is ob-
tained by subtracting the (unheate& grid) velocity spectrum from the
mixed spectrum.

The skewness of the veloclty spatlel derivative was determined by
differentiasting the velocity signal with respect to time and measuring
the mean cube and mean square of the resulting signal. The proportion-
glity of instantaneous space and time derivetives is close for this flow
(refs. 10 and 11). Since the noise was uncorrelsted with the derivative
signal, the nolse power could be subtracted directly from the mean-square
signal. The noise skewness was measured and found equal to zero so that
no correction was made to the cubed signal.

The triple velocity correlation measured in this experiment was
k(r) since k(r) requires hot-wires sensitlive only to u wveloecity. The
wire locations are, of course, identical to those required to measure

p(r).

To measure u%uz(g) the signals from two hot~wlres, separated a

distance & = r, were subtracted and cubed. The resulting signal, when
assuming ldentical hot-wires, is proportional to :

3 3 2 2
u - up + 3uyu, - 3u.lu2
If the sum of the two signals is also cubed, the result is
3 3 2 2
u +oug t 3u.lu2 + Sujup

For isotropic turbulence, ufuz(g) is an odd function of £ so that

ufuy = - ug"l
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Also

Therefore, if isotropy is assumed, the difference signal is Just 6u§u2,

the deslred quantity, and the sum is identicglly zero. When the sum was
measured for the wires in their closest position, however, 1t was found
thet the mean cubé of the signal was eight times the mean cube of a

single~wire voltage. -This anomalous behavior was itraced to the nonlinear

distortion of the signal by the hot-wire itself. The analysis of this
sltuation is given in the appendix.

When the difference of the two voltages is used, the nonlinear hot- o

wire effect on the mean cube is considersbly smaller, a phenomenon sim-
ilar to the canceling of second-harmonic distortion by a push-pull am-

plifier. Therefore, all measurements of the correlation ulz_u2 reported
here are measured by using the dlfference dgignal only.
[ o

=13/2

The function Sp,(r), defined as (u; - u2)3 [Eul - uz)?l / for
¢ = r, was obtained by direct measurement of the two factors. At r =0,
both numersgtor and denominator go to zero but in such a way that thelr '
ratio is equal to the skewness of the deriyative'(ref. 2). Therefore,
SAu(O) = Sﬁ‘ was obtalned by direct differentiation of the veloclity

signeal. _ ”

The cube of the difference signal from two wires asdjusted to be
equally sensitive to velocity and tempersture fluctuations is given by

.

(eg - €)% = ud = ud + 3udu; - 3ubuy + 6 - 63 + 3080, - 3650, +

Bup 68 + 368u; - Buy 66, - Bugf - 3unod + 6uyb; By +

2 2 _ 2 2, o
36w + 36jup - B0 uuy - 365y - BOup + E6pwup (1)

With isotropy, all the terms containing the variables at only one point
and the veloclty to an odd power are zero. There are also the following
isotropic relstions: ' w

|, VE6Y

A



4do4

CP-2

NACA TN 4288 9

wuy, = - u%uz ulelez = - uzele
ofe, = ws, oo, = 8
Jo, = ey EEY:

W upfy = %R0,

The correlation u16§ or uzef is identicelly zero for asn iso-
troplc, incompressible £ield just as the pressure velocity correlation
is zero (ref. 10). The correlation wuyf; is equal to wjugzf, since
this 1s one component of a second-order isotropic tensor, solenoidal in
one index, Jjust as f and g are even in the pure velocity case.
Therefore, continuity gives a relation between the two components, and
this relation preserves the symmetry property. The components analogous
to g (e.g., elv1v2) are obviously symmetric, and, therefore, Gluluz is
also symmetric in &.

With the assumption of isotropy in the field, therefore, the aver-
age of the difference voltage cubed is finelly reduced to

3 2 —_—
(e1 - e5)” = 6uju, + 12w 6,6, (2)

To determine the triple temperature correlation 9%62(5), the two

wires must be sensitive only to 0 temperature fluctuations. In this
megsurement, both the sum and difference signals of the two wires must
be cubed. By assuming identical hot-wires, the cube of the sum minus

the cube of the difference signel is proportional to

6§60, ~ (o1 + e3)° - (e - e)® (3)
which is the required correlation.

The preceding anslysis assumes identical hot-wires. In practice,
this is an extremely difficult condition to meet. It was found much
easier to determine the sensitivities of the two wires by actusal cali-
bration and to modify the above analysis to account for this difference.

The modification is straightforward in the determination of ufuz and
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6282, however, in the measurement of uj 6 92 the celculations require

that each wire be equally sensitive to velocity and temperature fluctua-
tions. This was impossible to accomplish 1n genersl, and the measure-~
ments of thils function contain contributions from correlations neglected
by symmetry conditions 1n the preceding analysis. However, rough esti-
mates of the order of magnitudes of these terms were made, and appro-
priete corrections hasve been made.

EXPERIMENTAT, RESULTS

The velocity and temperature fluctuation decay curves are plotted
in figures 10 and 11, respectively. A typicel pailr of runs 1s given for
each to indicate the repeataebility of the data as well as the equality
of hot- and cold-grid flows. The inverse squares are plotted in figures
12 and 13.

The time spectra of € and u at x/M= 17.0 were determined as
described in the previous section and are shown in figure 14. These may
be consldered feir spproximations to the one-dimensional longitudinal
space spectra, except for the lowest wave number range (ref. 11). With-
in the experimentsel precision there is no significent difference. The
circuit noise has been subtracted out for both sets of data.

The skewness of the veloclty derivetive, defined by
()
3x
()

ox
is shown in figure 15 as a function of x/M. For isotropic turbulence,

Sﬁ = k‘"(O)kg. The curve indicates that it is a slowly increasing func-

tion of x with values in the vicinity of 0.4. The nonconstancy may
indicate that the Reynolds number of the turbulence was not sufficiently
high for 8; to be determined solely by eddies in the Kolmogoroff in-

ertial subrange (ref. 3); there were contributions from the larger eddies
and from those influenced by viscosity. Other comparable data, including
some measurements by Batchelor and Townsend at the same Reynolds number
behind a grid of lower solidity (ref. 12) and one measurement by Stewart
(ref. 13), are included for comparison.

8. =
u

372

The temperature field was produced by the turbulence-producing grid
itself. It was hoped thet this method of introducing the temperature
fluctuations would not cause a "spotty” condition to be generated.

144514
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— —5.3/2
However, figure 16 shows S, = 9?/(62) as a function of x/M. Al-
though S84 is smell (mex. value, = 0.08), this evidence of an initial
"pulse" character is gquite measursble.

The longitudinal velocity correlations are shown for various values
of x/M in figure 17. The definition of this correlation is
uju
£f(r) = Gi—z where the subscript 1 denotes spatial location x, y, z and

subscript 2 denotes x4r,y,z. Primes on u; eand uy; mean root-mean-
square value. It is assumed that f(r) is essentially equeal to the iso-
tropic correlations of von Kérmén and Howerth (ref. 10). IFf the turbu-
lence were similar in structure at all decay times, a plot of this £(r)
against a nondimensionsl scale proportional to a local characteristic
length would collepse all curves into one. It is well established that
such 1s not the case in actual turbulence. For this plot the length
selected was the "dissipation scale” or "Taylor microscale," defined by

23
2°- "\3.2 =
7\g or =0

(4)

h?&lm

The A's used here were obtained by fitting parsbolas to the vertices.
Independent determination was made via the decay equation valid for iso-
tropic turbulence. This equation is also due to Taylor:

2 2
au” - 10, B2
at XZ

3

and with the use of Taylor's hypothesis for the interchangeability of
space and time on the average:

2 2 2
CARRELE R (5)
T N T A

2 as g function

Therefore, %g can be deduced from the decay curve for
of x. The kf comparison 1s given in figure 18, along with one value

obtalned from the second moment of the measured power spectrum (ref. 2):

=3 f w2, () A,y ()
0

>

2
T
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Within the experimental scatter, the use of r/?xf collapses the

correlations in the region near the origin but not at the tails, consis-
tent with earlier experimental results. The’ systematic decrease of the
correlation with decay time at a fixed r/7\f shows the well known fact

that the turbulence is not accurately similar; still, it is roughly so.

The temperature double correletions -

22

. n(r) =

[\)-

l

were plotted (fig 19) in the same way as the velocity correlations but
egainst r/Ngy, where this thermsl "microscale” is given by (ref. 4)

1_1 im)
7\2 2(81'2 =0 ™

That the temperabure fluctuastion field was reasonably isotropic is
evidenced by the approximete equality of the longitudinal and lateral
temperature double correlations (fig. 19(b)).

The isotropic temperature decey equation gives an independent esti-
mate of Ay (ref. 4):

2 2
iaes Y 6
= = 12 = —-7\2 (8)
0

The Ny scales are compared in figure 18 along with those (ref. 5) com-
puted from the temperature spectrum by an equation like (6).

Figure 20 shows a typicsl contrast between £(r) and m(r) at the
seme station. Although _R9== kf, which corresponds to rough equality

of vertex curvatures, m(r) runs higher Ilmmedigtely thereafter, which in-
dicates that

miv(o) > £iv(o) (9)

The experimental curves for the triple velocity correlations are
shown in figure 21. The values of k(r) were always negative for the
x/M and r values covered. According to isotropic turbulence theory,
the triple correlation 1s zerc at the origin, rises with an initial
cubid varlation, and is zero at r = «, The signal fluctuation made 1t
imprectical to measure at large r where k =~ 0. Whether k(r) changes

PLEY
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sign or goes to zero with a negative power greater than -4 (ref. 2) can-
not be determined from these data.

Figure 22 shows mixed temperature-velocity correlation coefficient
at two of the x/M values where the triple veloclty correlations were
measured. As measured,

1y 616,
u16167

These data are somewhat more scattered than those of k(r). When a cor-
relation function was measured seversl times, there sometimes occurred
systematic differences atiributed partly to the ineviteble difference
between any two hot-wires. Furthermore, individusl wire properties
change as the wire is used, malnly because of the accumulation of dirt
from the airstream.

o(r) = (10)

As sghown previously, under the assumpbtion of isoiropy it is possible
to get p(r) without knowing emything except k(r) if the wires are
identical and have their velocity and temperature sensitivities equal.

In practice, however, if the inevitebly nonidenticel wires are operated
so that they have the same sensitivity to velocity, their temperature
sensitivities will be different. This conditlon necessitates measurement

of other correlstions {(such as Q%Gz) in order to obtain p(r). Esti-
mates were made of these corrections to p(r) and. were negligible for

the three stations presented. (The correlation Q%GZ was available from
a separate measurement.)

The tempersture-velocity correlation coefficients have a shape sim-
ilar to that of the velocity correlations and are of the same order of
megnitude. They were negative for all x/M and r studied.

Figures 21 and 22 show the triple correlstion behavior as a func-
tion of decay time. These curves are plotted against an gbscissa scale
selected to collapse the curves in the neighborhood of the origin. Anal-
ysis, if the fields are considered as isotropic, shows that the velocity
correlgtion sterts in the well known way:

3

=+ .. (11)

k() = 5 3

w ol
o
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and thet
p(r) =~ -—l_:z (%6)2(%“) %3 + 0. (12)
uf e A

Therefore, since Sy 1s roughly constant, k(r) plotted against r/?xf
should be universal near the origin. Whether p(r) should be a universal

function of r(7\f7\g) '1/ 3 for r -+ 0 1s determined by whether
2 2
A
—E’g %‘1 (%) is roughly a constant as 1s the skewness factor of

Ahe 3 (20)
du/dx. The plots indicate that — Z\X increased more rapidly
u'é '

2
with decay time than S.. The gquantity % (%g) was not messured di-
V]
rectly because of the loss of the signal in the tube noise.

It appears from figure 23 that Pnex increased with increasing
x/M for the Reynolds and Peclet numbers of this experiment. The peek
values of Xk(r) also increase in absolute value for increasing x/M in
agreement with the result of Stewart (ref. 13). Near the origin they
fall into one curve, a necessary consequence of the relative constancy
of S.. This is evidenced in figure 21(a) where equation (11) has been

computed and plotted.

Plotted 1n this Pashion the tails of neither p nor k are uni-~
versal functions, which again shows that the fields do not remasin similax
at different decay times. .

Figure 24 shows the funciion
(o - up)®
Spulr) = e ugz 372
E%'%J

st several x/M. This function atteins its meximm at 1 = O where its
value is 8y, the skewness factor of the velocity derivative (ref. 2).

It falls off rapidly to sbout 0.2 and then gradually decreases, presum-
ably to zero. Its behavior, at all x/M covered, is the same. The
fact that this function is not a constant is ancother indication that the
Reynolds number of this turbulence was not sufficiently high for a dom-
inant inertial subrange. These measurements agree very well with those
of Stewart (ref. 13).

(13)

. 7267
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In figure 25 n(r) is shown as & function of r for the three sta-
tions examined. Although the scatter in the data is greater in these
results than in the other triple correlations presented, the general
trend of this correlation is indicated clearly. The required limit,
n(0) = Se, is substantiated within the accuracy of these experiments.

Figure 26 shows the measured values of g(r). Included for compaxy-
ison is the function g(r) computed from the well known isotropic rele-

tion (ref. 15)
g(r) = -él—r % [rzf(r?—J

The disagreement shown is probably partly due to the inaccuracy asso-
cisted with any graphicel differentigtion process, partly because the
scele characterizing the turbulence changes for r >0 in the f(r)
curve, and, £inally, because the turbulence 1s not precisely isotropic.

ANAT.YSTS

The theories of isotroplc turbulence and of isotropic scalar fluc-~
tuations in isotropic turbulence are still unsolved; in fact, they have
not even been formulated in a determinate wey without recourse to ad hoe
postulates. Nevertheless, & number of consequences of isotropy have
been inferred, including some particular (and relatively simple) forms
of the averaged differential equations. Several of these consequences
heave been invoked in the preceding section.

Two-point correlstion equations are of specisl interest here. For
isotropic fields decaying in time, there are for the vector and scalar
fields, respectively (refs. 4 and 14}):

— — — /N2
5 (Po) = @Y2 (F+ &) + 2 (grg + 2 %f—) (14)
and
— —_—1/2 — /2
2 @) - @ (R 22) - (T SIS
since

k(r) = -2n(r)

h(r) = - %k(r)
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Sufficient data were tsken to permit computation of every term in
these equations.’ Since the triple correlations were the least certain
experimental results, these measured functlons were compared with those
obtained from the double correlations by equations (14) and (15).

Figure 27(b) shows a typlcal compearison for the velocity field.
For small r/'/\f the sgreement 1s somewhat less then that of Stewart's
data (ref. 13), which are plotted in figure 27(a), but not significantly
so. Figure 22(b) gives the comparison for the mixed triple correlation
at station x/M = 32.0. '

vEBY

The small dissgreement is presumably attributable to either lack
of isotropy or inaccuracy in the measurement of triple correlgtions.
Since the smell structure should be reasonably isotropic even if the
large structure is not, the latter reason seems more likely.

If the correlastions appearing in the gbove equations are expanded
in & power serieg around r = O and the coefficients of the 0 terms
are kept, the so-called "decay equations" result: ;

2 2
du u-..
E’E— = —ZOV '7\—2" (16)
£
2 2
ae )
=2 = -2y = (17)
at 2
g

The actual experiments are done in steady state behind a grid with
the variocus averasged quantities depending upon x instead of t. Tgylor
has pointed out, in effect, that, if these vary sufficiently slowly with
X, _equation (lS)_can be applied to the grid flow with the substitution .
x/U = t. The same holds for equetion (17), so that -

2 2
- (18)
dx T 7\f

02 2
a6 T @
—= 212 = = (19)
dx T 2§

These two equations permit calculations of Ap(x) and Ay(x) from

the experimental data on u'(x) and 6'(x), as mentioned in the previous
section. The faired results are included in figure 18.

i|°
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Also plotted in figure 18 are the values of A obtained graphi-
cally from the double correlation curves according to

= _EL'!ZQ_)_ (20)

ool

= - fﬂz.o_) (21)

ol

and those calculated from the power spectra.

Reference 1 shows that for two special "kinds" of isotropic fields
the ratio Ke/kf hags the same simple value:

— A= (22)

where Pr 1s the Prandtl number v/v. The two kinds of isotropic fields
are:

(1) Reynolds and Peclet numbers are so smell that the convective
effects are negligible for both heat and momentum. Therefore, this is
not really turbulence in the ordinary sense.

(2) Reynolds end Peclet numbers are both very large, snd each field
is assumed to have completely "self-preserving” correlation function dur-
ing decay. In this model proposed by von Kérmén (ref. 15), the dissipa-
tion and conduction terms of the two correlation eguatlions are neglected,
but decay is included indirectly by substitution of the decay eguations
into the terms of the correlation equation.

Equeation (22) can also be deduced by an gpproach somewhat different
from the previous:

(3) The Reynolds and Peclet numbers are assumed to be 57 high that
the inertial subranges (with Eu(xx) and Ee(xx) both ===xi5 3) are suf-

ficiently extensive to permit the approximetions

= 1-5/3 x,. < <
x X
b8 9] X (]
Eqy () (23)

=0 elsewvhere



18 NACA TN 4288

zx's/s x < < %
X 0,6 = %= %¢,6

=0 elsevwhere

Egly) (24)

The cutoff wave number x is Just the inverse of Kolmogoroff's
microscale:

Ao = (25)

2n
')(.c’e = ne (26)
In reference 5 it is shown that
c,0 3/4
=== (pr) (27)

c

The microscales can be obtalned from the second moment of the power

spectrum as
= %j; x B, () (6)

% %L/W XoE g (0 ), (28)
(0]

Substituting equations (23) to (27) into (6) and (28) and neglecting

2/3
* relative to x2/3 and XZ/S relative to xz g result in
0 c 0,6 e,

2/3

A§ ( X0 ) 1
N Y 29
7\?‘ Xo.0 5 . (29)

If consideration is now restricited to fields in which the thermal large
eddy structure is roughly equal to the velocity large eddy structure
(as in these experiments),)co *fxo 67 which again results in equation

2

(22).

veev
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In fact, none of the three sets of assumptions leading to equation
(22) is directly spplicsble to these experiments. The Reynolds and
Peclet numbers are not low enough for case (1) and not high enough for
the other two cases. Furthermore, it was shown that the correlation
functions of veloclty do not remain completely similar during decay.
The important conjecture to be made is that a result encountered under
such divergent sets of assumptlons may have gpproximate validity in a
wide range of situations, perheps including the actual one.

By teking Pr = 0.72 for alr, equetion (22) gives

e

~ 1.2 (z0)

which 1s in reasonsble agreement with the downstream values of %e/%f

computed from the decay curves but is higher than the values computed
from the correlations. The data indicate a trend toward satisfaction
of this relation for large decay times. The only other measurement of
this retio was on the axis of & heated round turbulent jet (ref. 8),
where the value was 0.95.

The solid Ke/kf curve in figure 18 is Just a particular way of

displeying the decay daeta. Two other ways are also instructive. Figure
28 shows the variation in Reynolds and Peclet numbers:

utA
ReE—-VJ
3
Cug (31)
Pe =-—T—-

with A taken from the decay data. The apparent constancy of Pe is
evident.

Figure 29 shows the relative decay rates of tempersture and veloc-
1ty fluctuations. For small x/M, these fluctuations die out at about
the same rate, but, for larger x/M, 8' dies out at a decidedly lower
rate than does u'. For fully isotropic.fields the ratio of equatlon
(19) to equation (18) gives

(32)
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and, if equation (22) holds,

38’

ul
6T aw

(33)

ol

which is very close to the measured results at large x/M. Notlce that
equation (33) is independent of Pr.

No attempt has been made to compere the individual decay rates of
8" and w' with the theoreticsl predictions that can be obtained by a
variety of postulates. -

The integral scales are defined by

® D
Lf="[ f(r)dr

and | > (34)

L,= m(r)dr
SRS

These are shown in figure 30. Reference 4 .shows that, with self-
preserving correlations, 1f the scales are equal at any instant and also
gt the initial time, they will remain equal. The small discrepancy here
is doubtless a result of the fact that there is certainly no complete
similarity in either field. Another consequence of a supposed similar-
ity in both fields is that

Ao )
=— Pe = const.
Lg
and that > (35)
A _
f; Re = const.

Figure 31 shows good agreement with both relations for large decsy times.

Flgure 23 shows the value of kmax as & function of decay tine,

contrasted with the results of Stewart (ref. 12). It is interesting to
speculate on the history of k, .. for even greater decay times. A mono-
tonic increase in kmax (toward unity)} would not be in contradiction to

the usual spproximations for very large decey time, that is, the so-

called "final period" results, because the coefficient of the k term of

the correlation equation is the factor which certainly becomes negligible
as Re » 0. It seems plausible, though, that in ﬁhe_lbmiting case of

|, $SBY
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random Stokes' flow, analogous to heat conduction in a solid medium, the
veloclty probebility density is symmetrical, in which case k(r) would
go to zero at t —+ =,

CONCLUDING REMARKS

In roughly isotropic concomitant velocity and temperature fluctua-
tion fields it has been found that:

1. The temperature fluctuations die out more slowly than the turbu-
lence (fig. 29) in gpproximate agreement with the predictions of refer-
ence 4.

2. The temperature double correlgtion coefficient function is rough-
ly equal to the "longitudinsl" velocity correlation.

3. The "mixed" triple correlation coefficient function entering the
double temperature correlation equation is of the same order as the cor-
responding velocity triple correlation.

More explicit statement of detalled quentitative results covered
herein will not be given here because these results msy not have suffi-
cient universality. They may be significantly characteristic of the de-
viaetions from isotropy in these velocity and tempersture fields.

The Johns Hopkins Unilversity,
Beltimore, Md., June 12, 1957.
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APPENDIX - EFFECT OF HOT-WIRE NONLINEARTITY
ON TRIPLE CORRELATION MEASUREMENT

At "small" fluctuation levels, perhaps '/— < 10 percent, the
Dryden~-Kuethe linearized equation for hot-wire response (ref 16) is
satisfactory for measurements of a number of turbulence properties. For
example, it is well known that turbulence level, double correlation, and
power spectrum measurements are not seriously distorted in the (< 3~
percent level) isotropic turbulence rather far behind s grid. However,
previous research (ref. 13) makes no mention of this possible source of
error ln triple correlation measurements. It is evident that this re-
placement of the response curve by its locsl tangent will lead to poorer
approximations for functions which depend more heavily on the tails of
the probebility density of wu(t). Furthermore, awsy from responsé cuive -
inflection points it seems evident that odd moments will tend to fare
worse under lineer approximation than will even ones.

The gimplest case of concern here is the skewness of wu,
3/(u2)5/2 A Pirst-order estimste of the error in this measure-

ment 1s obtained by keeping the parsbolic terms Iin the perturbation form
of King's equation for hot-wire sensitivity A suitable approximste
form of King's equation is

2 _a-1% 4 BT (A1)
R - Ra

where

A,B constants

1 wire current, taken constant here

R wire resistance

Rg wire resistance gt ambient fluid temperature, taken constant here

U instantaneous velocity normel to wire

Writing U=U+u and R=R+ r where u=7r =0 and expanding the

2

square root out to u” glve

.ZR —

IR N
- + B~U A - 17 4+ BofU

2f0 — SR (2)

-12+B-/_ A - 12 4+ BfT)

1
8

e e b
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Averaging equation (A2) and subtracting the average from (A2)

result in
_ 138Rg /0

u
e rewcrew - R G R

2 _ 42
1+ ZB-\/t:f- u u (AS)

A -2y T

from which could be computed the measured skewness,

1
4

ed

as a function of the true skewness S, end of other flow and wire prop-
erties. For simplicity, the analysis 1s restricted to isotropic turbu-
lence, in which case S, = 0. The relation 1.14“/(u2)2 = -3 is taken as
the Gaussian value, and the final estimate is

+A-12+B-ﬁ%-

For a typicel 0.1-mil platinum wire at an overheat temperature of 50° C
in 2-percent turbulence level flow, this estimate gives

Se*’

ol

Se = 0.05
even though 8, = O.

The seriousness of this effect can be gauged by observing that 0.05
:L? the order of the maximum value of the triple correlstion coefficient
k(r).

Before proceeding to an estimaste of the effect on triple correla-
tion measurement, the determination of skewness of velocity derivative
is considered:

Y
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Following a proc dure similar to that for Sg, an estimate is obtained

for 8
g
séw-sﬁl-if’-(cz+0+—§-)fl%)—z (a5)
! * (%)
vhere : -

For the typical hot-wire operation cited p;eviously, equation (AS) gives
Sy = —Sﬁ(l - 0.9_05)

vwhich Indicates & mnegligible effect. The guadruple correlation is esti-
mated from the data of reference 17. o : ' S

In & completely formal measurement of triple correlation coefficilent
(using mesn cubes of sum and difference voltage) sn additive error can be
expected of the order of that in S,, which is epprecisble. However, for

isotropic turbulence the triple correlation is just proportional to the
skewness of the velocity difference (see section on experimentsl proce-
dure), and it is not difficult to show that in velocity difference skew-
ness measurement the error due to nonlinearity is smell. In a sense, the
effects of the two wlres tend to cancel. Hence, 1t is convenient for

reasons of bhoth speed and reduction of error to follow Townsend in assum-

ing isotropy end thereby using the ideal relation

.= 3/
2 2
(ul - uz)3 = -Buuy = =6(u”) k(r)
Writing the two wire responses in series form gilves

e = Z a‘iuil. ey = 5: a.Ju% (a6)

=0 =0

where a; and ay eore proportionality constants. Terminated with the

u® terms, equations (A6) become equation (A3), from which an estimate of |

BCRY
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the first-order error committed by assuming that any dimensionless sta-
tistical function of ej;es 1s equal to the corresponding function of

U U, In particular, the difference skewness factors

(eq - ez)s/[(el - ez)ﬂE/2 end (up - uz)s/[(ul - uy) 2]3/2 turn out

to be related by

4 23
1 (c . 1)2 U - uiug

SAe = SAu A —_—
1~ Y2

4 3
uy - uyu
(CZ+C+E) 1 12 +

2
=2 2
U (ul - uz)

WM

higher order terms (A7)

For the example used earlier equation (A?) gives an error of less
than 0.2 percent for r >-]2—' A and rises to perhsps 2 percent at r - O.
Hence, this effect is negligible within the accurscy of these
measuremnents.

In the cubed-difference approximation to triple correlastion, the
same approach leads to

3 —
(e - e ¥ (u - w) 2
1-°% T 1-3{c%+c+-L)5 (A8)
e 16) 52
el e2 ul u_.2

after the assumption of u4/ (uz)2 = 3. This corresponds to percent errors
about 10 times those in SAe , but these errors are appreciable only as

r -+ 0 vwhere (el - ez)s/ ejz_ld e% is also going rapidly to zero; thus,
no diffleculty arises.
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Figure 19. - Tempersture double correlstions for various x/M.
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(a) x/M = 17.0.

Figure 2. - Mixed temperature-velocity correlstion coefflicient.

Je6%

8s

882¥% NI VOVN




!05

.04

—p(r)

.03

.02

- ..' - AU 4934.... :

7(’%"5)%

(b} x/M = 32.0.

Figure 22, ~ Contimued, Mixed temperature-velocity correlstlon coefficlent.
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Figure 22. - Concluded. Mixed tempereture-velocity correlation coefficient.

Pe6F

8s

g82¥% NI VOVN




| | ] I 1 g
.08 |- - =
P~
B
a o]
presen* dnj_c
k
-06 — /mm// R —— ——
Pmax - kmax __ — S
- kmax /D/)/LBEW
.04 -
- -
02+ -
0 | 1 1 | 1
0 20 40 60 80 100
X
M
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Figure 24. - Function 8, (r) at various /.
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Flgure 25. - Triple temperature correlation n(r) as funetion of r.
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Figure 26. - Measured velues of g&(r). XM= 17.0.
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Figure 27. - Comparison of measured values of triple correlation with
values predicted from equation (14).
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Figure 28. - Variation in Reynolds and Peclet numbers.
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Figure 29. - Relative decay rates of temperature and veloclity fluctuations.
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Figure 30. - Integral scales.
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Flgure 31. - Demonstration of the spproach to slmilerity of temperature and velocity Plelds at large
values of x/M.
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